187 research outputs found

    Length scale dependence of dynamical heterogeneity in a colloidal fractal gel

    Full text link
    We use time-resolved dynamic light scattering to investigate the slow dynamics of a colloidal gel. The final decay of the average intensity autocorrelation function is well described by g_2(q,τ)1exp[(τ/τ_f)p]g\_2(q,\tau)-1 \sim \exp[-(\tau/\tau\_\mathrm{f})^p], with τ_fq1\tau\_\mathrm{f} \sim q^{-1} and pp decreasing from 1.5 to 1 with increasing qq. We show that the dynamics is not due to a continuous ballistic process, as proposed in previous works, but rather to rare, intermittent rearrangements. We quantify the dynamical fluctuations resulting from intermittency by means of the variance χ(τ,q)\chi(\tau,q) of the instantaneous autocorrelation function, the analogous of the dynamical susceptibility χ_4\chi\_4 studied in glass formers. The amplitude of χ\chi is found to grow linearly with qq. We propose a simple --yet general-- model of intermittent dynamics that accounts for the qq dependence of both the average correlation functions and χ\chi.Comment: Revised and improved, to appear in Europhys. Let

    A microscopic view of the yielding transition in concentrated emulsions

    Full text link
    We use a custom shear cell coupled to an optical microscope to investigate at the particle level the yielding transition in concentrated emulsions subjected to an oscillatory shear deformation. By performing experiments lasting thousands of cycles on samples at several volume fractions and for a variety of applied strain amplitudes, we obtain a comprehensive, microscopic picture of the yielding transition. We find that irreversible particle motion sharply increases beyond a volume-fraction dependent critical strain, which is found to be in close agreement with the strain beyond which the stress-strain relation probed in rheology experiments significantly departs from linearity. The shear-induced dynamics are very heterogenous: quiescent particles coexist with two distinct populations of mobile and `supermobile' particles. Dynamic activity exhibits spatial and temporal correlations, with rearrangements events organized in bursts of motion affecting localized regions of the sample. Analogies with other sheared soft materials and with recent work on the transition to irreversibility in sheared complex fluids are briefly discussed.Comment: 11 pages, 10 figures. Submitted to Soft Matte

    Brambilla et al. Reply to a Comment by J. Reinhardt et al. on "Probing the equilibrium dynamics of colloidal hard spheres above the mode-coupling glass transition"

    Full text link
    G. Brambilla et al. Reply to a Comment by J. Reinhardt et al. questioning the existence of equilibrium dynamics above the critical volume fraction of colloidal hard spheres predicted by mode coupling theory.Comment: To appear in Phys. Rev. Lett. Reply to a Comment by J. Reinhardt et al. (see arXiv:1010.2891), which questions the existence of equilibrium dynamics above the critical volume fraction of glassy colloidal hard spheres predicted by mode coupling theor

    Highly nonlinear dynamics in a slowly sedimenting colloidal gel

    Full text link
    We use a combination of original light scattering techniques and particles with unique optical properties to investigate the behavior of suspensions of attractive colloids under gravitational stress, following over time the concentration profile, the velocity profile, and the microscopic dynamics. During the compression regime, the sedimentation velocity grows nearly linearly with height, implying that the gel settling may be fully described by a (time-dependent) strain rate. We find that the microscopic dynamics exhibit remarkable scaling properties when time is normalized by strain rate, showing that the gel microscopic restructuring is dominated by its macroscopic deformation.Comment: Physical Review Letters (2011) xxx

    Subdiffusion and intermittent dynamic fluctuations in the aging regime of concentrated hard spheres

    Full text link
    We study the nonequilibrium aging dynamics in a system of quasi-hard spheres at large density by means of computer simulations. We find that, after a sudden quench to large density, the relaxation time initially increases exponentially with the age of the system. After a surprisingly large crossover time, the system enters the asymptotic aging regime characterized by a linear increase of the relaxation time with age. In this aging regime, single particle motion is strongly non-Fickian, with a mean-squared displacement increasing subdiffusively, associated to broad, non-Gaussian tails in the distribution of particle displacements. We find that the system ages through temporally intermittent relaxation events, and a detailed finite size analysis of these collective dynamic fluctuations reveals that these events are not spanning the entire system, but remain spatially localized.Comment: 11 pages; 10 fig

    Investigation of qq-dependent dynamical heterogeneity in a colloidal gel by x-ray photon correlation spectroscopy

    Get PDF
    We use time-resolved X-Photon Correlation Spectroscopy to investigate the slow dynamics of colloidal gels made of moderately attractive carbon black particles. We show that the slow dynamics is temporally heterogeneous and quantify its fluctuations by measuring the variance χ\chi of the instantaneous intensity correlation function. The amplitude of dynamical fluctuations has a non-monotonic dependence on scattering vector qq, in stark contrast with recent experiments on strongly attractive colloidal gels [Duri and Cipelletti, \textit{Europhys. Lett.} \textbf{76}, 972 (2006)]. We propose a simple scaling argument for the qq-dependence of fluctuations in glassy systems that rationalizes these findings.Comment: Final version published in PR

    Multiangle static and dynamic light scattering in the intermediate scattering angle range

    Full text link
    We describe a light scattering apparatus based on a novel optical scheme covering the scattering angle range 0.5\dg \le \theta \le 25\dg, an intermediate regime at the frontier between wide angle and small angle setups that is difficult to access by existing instruments. Our apparatus uses standard, readily available optomechanical components. Thanks to the use of a charge-coupled device detector, both static and dynamic light scattering can be performed simultaneously at several scattering angles. We demonstrate the capabilities of our apparatus by measuring the scattering profile of a variety of samples and the Brownian dynamics of a dilute colloidal suspension

    A double rigidity transition rules the fate of drying colloidal drops

    Full text link
    The evaporation of drops of colloidal suspensions plays an important role in numerous contexts, such as the production of powdered dairies, the synthesis of functional supraparticles, and virus and bacteria survival in aerosols or drops on surfaces. The presence of colloidal particles in the evaporating drop eventually leads to the formation of a dense shell that may undergo a shape instability. Previous works propose that, for drops evaporating very fast, the instability occurs when the particles form a rigid porous solid, constituted of permanently aggregated particles at random close packing. To date, however, no measurements could directly test this scenario and assess whether it also applies to drops drying at lower evaporation rates, severely limiting our understanding of this phenomenon and the possibility of harnessing it in applications. Here, we combine macroscopic imaging and space- and time-resolved measurements of the microscopic dynamics of colloidal nanoparticles in drying drops, measuring the evolution of the thickness of the shell and the spatial distribution and mobility of the nanoparticles. We find that, above a threshold evaporation rate, the drop undergoes successively two distinct shape instabilities. While the second instability is due to the permanent aggregation of nanoparticles, as hypothesized in previous works on fast-evaporating drops, we show that the first one results from a reversible glass transition of the shell, unreported so far. We rationalize our findings and discuss their implications in the framework of a unified state diagram for the drying of colloidal drops
    corecore